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Dissipation-range intermittency was first observed by Batchelor & Townsend (1949) in
high Reynolds number turbulent flows. It typically manifests itself in spatio-temporal
binary behaviour which is characterized by long, quiescent periods in the signal which
are interrupted by short, active ‘events’ during which there are large excursions away
from the average. It is shown that Leray’s weak solutions of the three-dimensional
incompressible Navier–Stokes equations can have this binary character in time. An
estimate is given for the widths of the short, active time intervals, which decreases
with the Reynolds number. In these ‘bad’ intervals singularities are still possible.
However, the average width of a ‘good’ interval, where no singularities are possible,
increases with the Reynolds number relative to the average width of a bad interval.

1. Introduction
More than 50 years have elapsed since Batchelor & Townsend (1949) discovered

the phenomenon of dissipation-range intermittency in various high Reynolds number
turbulent flows. The main signature of an intermittent flow is that of long, relatively
quiescent periods in the signal interspersed with short, dramatic events during which
there are large excursions away from the average. Batchelor & Townsend (1949) noted
that large-wavenumber components were concentrated in isolated flow regions, which
they referred to as ‘spottiness’. They suggested that the energy associated with the
small-scale components is distributed unevenly in space and roughly confined to
regions which concomitantly become smaller with eddy size (see Kuo & Corrsin 1971).
In experimental investigations of the energy dissipation rate in several laboratory
flows, and in the atmospheric surface layer, Meneveau & Sreenivasan (1991) inter-
preted the evident intermittent nature of their signals in terms of multifractals.

Sreenivasan (1985) and Frisch (1995) (who has devoted a sizeable portion of
his book to a discussion of mainly inertial-range intermittency) have both made
the important point that the various turbulence models that have been popularly
used over the years to explain intermittent phenomena make no direct appeal to
the Navier–Stokes equations. Herein lies the mathematical challenge: to show that
Leray’s weak solutions of the Navier–Stokes equations typically have a temporal
‘binary’ character – to borrow a phrase from Sreenivasan (1985) – in which short,
high-amplitude events associated with the fine structure are seen to be distinct from
quieter, longer regions. Theoretically, the phenomenon of intermittency is a landmark
to which many important questions lead. One such question is whether singularities
occur during one or more of the intermittent events. Scheffer (1976) showed that the
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potentially singular set in time has zero half-dimensional Hausdorff measure, followed
by Caffarelli, Kohn & Nirenberg (1982) who showed that the singular set in space–
time has zero one-dimensional Hausdorff measure; for recent shorter proofs of this
last result see Lin (1998) and Choe & Lewis (2000). This means that if singularities
do occur then they must be relatively rare events in space–time. The question of
the existence of singularities is not only central to the difficult, unsolved problem of
regularity (Temam 1983; Constantin & Foias 1988; Doering & Gibbon 1995) but
it has long been suggested that it may have some bearing on the fractal nature of
both the energy dissipation field and higher velocity derivatives; see, for instance,
Mandelbrot (1976, 1982), Sreenivasan & Meneveau (1988); Meneveau & Sreenivasan
(1991) and references in Frisch (1995).

In this paper some results on dissipation-range intermittency along the lines
described above will be derived directly from Navier–Stokes equations. Explicit
quantitative estimates are obtained, as a function of the Reynolds number Re, of
the widths, and relative widths, of time intervals over which high-amplitude events
can occur. Specifically, bounds are derived on the amount of time that certain small
scales in the flow – time-dependent wavenumbers κn(t) – are much larger than their
typical size. These wavenumbers, defined precisely in the next section, are ratios of
volume integrals taken over a finite periodic domain and are based on Navier–Stokes
solutions. Even when Taylor’s hypothesis has been used, experimental quantifications
of intermittency have always been spatial, whereas the κn(t) are functions only of
time. Nevertheless, they are sensitive to the effects of spatial intermittency through
volume integration; the finite domain prevents fluctuations from being averaged away.
Clearly the κn are not the same quantities as those measured by experimentalists, such
as the energy dissipation rate, but estimates for the former are rigorous and make
no appeal to any approximations. Physically they can be considered as a measure of
the 2nth moment of the energy spectrum (see Doering & Gibbon 2002). While the
long time average of κn has an upper bound proportional to Reλn (where λn > 0 is an
exponent also defined precisely below), excursions to high amplitudes – small scales
where singularities could possibly occur – can only happen in relatively small time
intervals, called ‘bad’ intervals of width (�t)b. During the intervening ‘good’ intervals
of width (�t)g , the flow is smooth. In particular it will be shown that (i) the widths
of the bad intervals (�t)b are uniformly small at high Reynolds number, and (ii) the
ratio of the average width of the good intervals, (�t)g , to the average width of the

bad, (�t)b, diverges as Re → ∞. These are rigorous mathematical manifestations of
the qualitative phenomenon of intermittency.

2. Preliminaries and previous results
Consider the three-dimensional incompressible Navier–Stokes equations for the

velocity field u(x, t)

ut + u · ∇u = ν�u − ∇p + f (x), ∇ · u = 0, (2.1)

on a periodic domain Ω = [0, L]3 where p is the pressure and ν the viscosity. For
convenience, a narrow-band, time-independent, divergence-free forcing function f (x)
is used, with a preferred length scale � related to that of the domain L by � = L/2π
so that we will estimate ‖ f ‖2 ≈ �n‖∇n f ‖2. The notation ‖ · ‖2 is the usual one for
the L2-norm. This choice of narrow-band forcing function with its restricted length
scale simplifies, but does not restrict, the analysis (see Doering & Gibbon 2002). The
dimensionless control parameter is Gr = �3/2ν−2‖ f ‖2; analysts conventionally call
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this the Grashof number. The root-mean-square velocity U in the Reynolds number
Re = U�/ν is defined via the time average of the energy, U 2 = L−3〈‖u‖2

2〉, an a priori
bounded quantity even for weak solutions (Leray 1934). The long time average is
defined by

〈Φ〉 = limt→∞

(
1

t

∫ t

0

Φ(s) ds

)
, (2.2)

where lim is a generalized long-time limit for (weak) statistical solutions of the
Navier–Stokes equations (Foias et al. 2001). Doering & Foias (2002) have recently
shown that for high Gr , Navier–Stokes solutions obey Gr1/2 � c Re, where c is the first
of many absolute dimensionless constants that enter the analysis (c is independent
of Re, L, ν etc). Higher derivatives of the velocity field, together with those of the
forcing, are incorporated into the set (n � 1)

Fn =

∫
Ω

(|∇nu|2 + τ 2|∇n f |2) dV, (2.3)

where the characteristic time τ is defined as τ = L2ν−1Gr−(1/2+δ) and δ is a
small correction defined below. Ratios of the Fn define a set of time-dependent
‘wavenumbers’, each with a dimension of inverse length

κn,r (t) =

(
Fn

Fr

) 1
2(n−r)

. (2.4)

When r = 0, it has been shown recently by Doering & Gibbon (2002) that, in the
asymptotic limit Re → ∞, when n � 1, the κn,0 obey

L 〈κn〉 � cnReλn , λn = 3 − 5

2n
+

δ

n
, (2.5)

where the zero subscript in κn,0 has been dropped for simplicity. We are free to choose
the parameter δ in the range 0 < δ < 1

2
; the constants cn depend only on n and

possibly on δ but not on Re. The form of τ has been chosen such that the forcing
does not dominate over the fluid flow components. The case n = 1 in inequality (2.5)
is the equivalent of Leray’s original result for weak solutions. For higher values of n

this remains a strictly weak solution result because the bound on the time average
does not prevent integrable singularities in the κn. In addition, the κn(t) are ordered
for all t such that

L−1 � κ1 � · · · � κn � κn+1 . . . . (2.6)

An inequality exists for the Fn of the form F p+1
n � Fn−p F

p

n+1 for 0 < p < n from
which one obtains (

κn

κn−p

)n−p

�

(
κn+1

κn

)p(n+1)

. (2.7)

Ratios of the κn arose in Batchelor & Townsend (1949) who were concerned with
experimental measurements of the ratio D6D

−2
4 D2: to within constants their D2n are

equivalent to the Fn defined in equation (2.3) with f = 0. Hence D6D
−2
4 D2 is similar

to

F3F
−2
2 F1 =

(
κ3

κ2

)6 (
κ2

κ1

)−2

. (2.8)

Their experimental results showed that D6D
−2
4 D2 was larger than would normally be

expected for Gaussian data.
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3. The binary form of the time-axis and intermittency
The measurements of Batchelor & Townsend (1949) provide us with the motivation

for examining the ratio κn+1/κn to investigate the binary nature of the time axis. Take
two parameters 0 < µ < 1 and 0 < α < 1 such that µ + α = 1. The inverses µ−1 and
α−1 will be used as exponents in the Hölder inequality on the far right-hand side of

〈
κα

n

〉
�

〈
κα

n+1

〉
=

〈(
κn+1

κn

)α

κα
n

〉
�

〈(
κn+1

κn

)α/µ
〉µ

〈κn〉α
(3.1)

thereby giving 〈(
κn+1

κn

)α/µ
〉

�

( 〈
κα

n

〉
〈κn〉α

)1/µ

=
〈
κα

n

〉(〈
κα

n

〉
〈κn〉

)α/µ

. (3.2)

Navier–Stokes information can be injected into these formal manipulations by using
the weak solution bound (2.5) and the lower bound Lκn � 1 in the ratio on the far
right-hand side to give〈[

cn

(
κn+1

κn

)]α/µ

−
[
(Lκn)

µRe−λn
]α/µ

〉
� 0 (3.3)

with the same cn as in (2.5). A positive time average implies that the integrand is
positive on some time intervals (at least one) but not necessarily the whole t-axis. The
intervals where this integrand is positive are designated as good intervals on which
the inequality

cn

(
κn+1

κn

)
� (Lκn)

µ Re−λn (3.4)

holds. On the rest of the time-axis, designated as bad intervals, the κn must satisfy the
reverse inequality

cn

(
κn+1

κn

)
� (Lκn)

µ Re−λn . (3.5)

Clearly this allows the t-axis to display a ‘binary’ character. This is not an absolute
necessity, however, for there are steady, laminar flows for which the whole t-axis
would be a good interval. The precise distribution and occurrence of the good/bad
intervals on the t-axis remains an open question but the analysis in this paper will
concentrate on flows that have a binary character.

On bad intervals, where the κn satisfy inequality (3.5), use of (2.6) shows that κn

must be bounded below uniformly by

Lκn(t) � cn,µReλn/µ, (3.6)

where cn,µ = c1/µ
n . Depending on the choice of µ < 1, and for Re → ∞, it is clear

that this lower bound is considerably larger, possibly by many orders of magnitude,
than the upper bound on the global time average (2.5). Note that (3.5) itself does
not imply that a bad interval is finite, or that bad intervals are short in width, or
even that their widths are short relative to the good intervals. To prove these results
requires the use of (3.6) in combination with Navier–Stokes inequalities on κn,1 as in
the Appendix. An upper bound is found there on the width (�t)b = t1 − t0 of a bad
interval

(�t)b � c(1)
n L2ν−1Re4−λn/µ (3.7)
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with the requirement that µ be restricted to lie in a range narrower than 0 < µ < 1,
namely

0 < µ < λn/4. (3.8)

If µ lies outside this range then the methods employed fail to find any finite upper
bound on (�t)b. The range of µ given in (3.8) shows that the exponent of Re in (3.7)
is clearly negative, which means that the bad intervals decrease with increasing
Re. Importantly, as the Appendix shows, within these bad intervals no upper
bound on the κn has been found. Hence, despite their finite width, and reinforced
by the size of their lower bound given in (3.6), singularity formation cannot be
ruled out.

What happens on the good intervals for this range of µ? It is not difficult to turn
the standard differential inequality for the Fn into one for the κn (Doering & Gibbon
2001):

nκ̇n � −ν

[(
κn+1

κn

)2n+2

− 1

]
κ3

n + cnκ
7/2
n F

1/2
0 + Re κn. (3.9)

Inequality (3.9) illustrates the regularity problem: for large κn the negative κ3
n viscous

term is not strong enough to control the κ7/2
n term despite the fact that F0 is always a

bounded function. Alternatively, if (2.7) is used together with (2.6), it can be shown
that if any κn is bounded then all κn are bounded; it ought to be emphasized,
however, that no a priori upper bound on any κn is known to exist for arbitrary long
times.

On the good intervals, however, (3.4) comes to our aid when applied to (3.9). Its
effect is to add power to the κn+1/κn term at fine scales when Lκn > cn,µReλn/µ. No
singularities can occur on these intervals provided

µ >
1

4(n + 1)
. (3.10)

In combination with (3.8), this shows that the range in which µ must lie is

1

4(n + 1)
< µ <

λn

4
, (3.11)

which narrows with decreasing n. The distribution of the good/bad intervals on the
t-axis may differ for each n. If a point t = t∗ lies in a bad interval corresponding to
κn for some n but also lies in a good interval of another κm (m 	= n), then all κn for
every n are bounded at t∗. A singularity is only possible if t∗ lies in a bad interval for
every n � 1.

It is clearly desirable to have a lower bound on the width of the good intervals
(�t)g that increases relative to (�t)b. We have not been able to show that the width
of each good interval is large with respect to each of the bad intervals. However,
an elementary argument based on the Markov–Chebychev inequality shows that the
average width of a good interval increases relative to the average width of a bad
interval. Consider an interval of time [tp, tq] that contains the same number N of

good and bad intervals of widths (�t)(i)g and (�t)(i)b respectively. Then the fraction of
time occupied by the bad intervals satisfies
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N∑
i=1

(�t)(i)b

N∑
i=1

[
(�t)(i)g + (�t)(i)b

] �
1

tq − tp

∫
[Lκn(t)�cn,µReλn/µ]∩[tp, tq ]

dt

�
1

tq − tp

(∫
[tp, tq ]

Lκn dt

cn,µReλn/µ

)
. (3.12)

Now we define the average widths of the good and bad intervals as

(�t)g = lim
N→∞

1

N

N∑
i=1

(�t)(i)g , (�t)b = lim
N→∞

1

N

N∑
i=1

(�t)(i)b , (3.13)

so as N → ∞ and tq − tp → ∞, we have

(�t)b

(�t)g + (�t)b
�

〈Lκn〉
cn,µReλn/µ

�
[
cnReλn

]1−(1/µ)
, (3.14)

where we have used (3.6) and (2.5). Hence

(�t)g � (�t)b
{[

cnReλn
](1/µ)−1 − 1

}
, (3.15)

and so the ratio of (�t)g to (�t)b diverges as Re → ∞ because µ < 1.
What is the nature of solutions on both these intervals and how close is the binary

behaviour described in this section to the observed phenomenon of intermittency? In
the bad intervals, where large lower bounds indicate high activity, singularities cannot
be ruled out, but the precise nature of weak solutions there remains an open question.
The factor of µ−1 in the exponent in (3.6) is significant: at the lower end of the range
in which µ lies, the µ−1 factor magnifies the lower bound, effectively pushing up the
value of κn to heights many orders of magnitude above the global weak solution time
average in (2.5). So as not to violate this average the κn must behave in the good
intervals is such a manner that they balance the much larger than average behaviour
within the bad intervals. While this indicates a relative degree of quiescence it is hard
to prove this in a more specific manner; the situation is also complicated by the fact
that the ‘good’ solution must match onto the ‘bad’ (weak) solution at t0 and t1 where
they must both be O(Reλn/µ). A perusal of (3.9) shows that values of κn can indeed
be this large. What happens in the middle section of the good intervals is therefore
an important question. Although singularities are ruled out in these intervals it would
be gratifying to be able to prove that solutions there are flatter than average. These
two open questions regarding potential singularities and the quiescence of solutions
in the regions surrounding them are not independent.

4. Conclusion
This paper has attempted to address the issue of how time intermittency can arise

in the Navier–Stokes variables κn when the domain is finite and periodic. The obvious
connection with the well-known regularity problem for the Navier–Stokes equations
is of interest. It has been known for many decades that they are regular for arbitrarily
long times for small initial data. For arbitrarily large initial data, regularity for short
times is all that is known. The books by Temam (1983) and Constantin & Foias
(1988) give a fuller story, including work on weak solutions. The picture that the
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results of this paper presents is that of a ‘punctured time-axis’. Solutions of the
Navier–Stokes equations turn out to be regular on longer, good intervals which are
themselves interspersed with shorter holes of finite but small width in the axis (the bad
intervals) where regularity is uncertain. The widths of the holes decrease as Re → ∞,
whereas the widths of the good intervals increase relative to the latter in the averaged
sense. The controlling mechanism within the good intervals is that of the viscous term
effectively increasing sufficiently in strength at fine scales to control the nonlinear
terms. Interestingly, the κn are forced to have large lower bounds Lκn � cn,µReλn/µ

within the bad intervals where activity is high.
It is here where it is tempting to investigate the suggested connection between

the multifractal nature of intermittent flows and either singular or near-singular
behaviour, as discussed by many authors such as Sreenivasan & Meneveau (1988)
and Meneveau & Sreenivasan (1991). This raises the question of whether the binary
nature of the κn on the time-axis is an artefact of the analysis or whether it is real.
Leray (1934) showed that the singular set in time S has zero-dimensional Lebesgue
measure, which means that if singularities occur then they must do so at points.
Scheffer (1976) took this a stage further and showed that S has zero half-dimensional
Hausdorff measure. To prove true fractality of solutions by the methods of this paper
it would be necessary to show that each bad interval itself has an internal binary
structure leading to a repetitively embedded binary sub-structure at every scale. To
see whether it is possible to prove this, the calculation performed in (3.2) can be
repeated with the time integrals taken only over the finite interval (�t)b:

∫
(�t)b

(
κn+1

κn

)α/µ

dt �

(∫
(�t)b

κα
n dt

)(∫
(�t)b

κα
n dt∫

(�t)b
κn dt

)α/µ

. (4.1)

To find a lower bound on the ratio in the round brackets on the far-right hand leads
to the necessity of finding a lower bound on (�t)b and it is this that is currently
unavailable. If, however, such a lower bound could be found then it is possible that
the process could then be repeated ad infinitum, thereby producing the sieve-like
structure of a Cantor-like set within the bad intervals.

Finally the a priori bounds on the 〈κn〉 in (2.5) are higher than the conventional
Kolmogorov theory of turbulence predicts and are consistent with a k−8/3 spectrum
(Doering & Gibbon 2002; Sulem & Frisch 1975). If the conventional picture may
be caricatured as a wide k−5/3 inertial range with a sharp cut-off at the Kolmogorov
scale ∼ LRe−3/4, then the 〈κn〉 would be expected to scale with a different λn, denoted
as λ̃n, such that

L 〈κn〉 ∼ cnRe λ̃n , λ̃n =
3

4
− 1

4n
+

δ

n
. (4.2)

Although it has not been proved that these exponents are rigorous bounds – at least
not without intermittency-suppressing assumptions; see Doering & Gibbon (2002) –
such scaling is not inconsistent with the intermittency picture described here. Indeed,
this kind of scaling in the 〈κn〉 does not rule out singularities in the solutions during
the bad time intervals but reduces the length scale below which these occur to roughly
the Kolmogorov length. The dynamics associated with these intervals would be the
cause of sub-Kolmogorov fine structure in the flow; the widths of these intervals

would vanish uniformly as Re4−λ̃n/µ for some 0 < µ < λ̃n/4, as in (3.7) and (3.8).
Moreover, the ratio of the widths of the good to bad time intervals would still diverge
as in (3.15).
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Appendix. An estimate for (�t)b

Take the differential inequality for κn,1 (Doering & Gibbon 1995) and divide by
κ2

n,1:

(n − 1)
dκn,1

dt
� −ν

(
κn+1,1

κn,1

)2n

κ3
n,1 + νκn,1κ

2
2,1 + cn κ

5/2
n,1 F

1/2
1 + νL−2Re κn,1. (A 1)

Using Young’s inequality to break up the κ
1/2
n,1 F

1/2
1 and κn+1,1 � κn,1, (A 1) gives

(n − 1)
d

dt
κ−1

n,1 � 1
2
νκn,1 − νκ2,1 − cnν

−1F1 − νL−2Reκ−1
n,1. (A 2)

Using the lower bound Lκn,1 � Lκn � Reλn/µ and integrating from t0 → t gives

An

ν

[
κ−1

n,1(t) − κ−1
n,1(t0)

]
�

∫ t

t0

{
κn,1(t

′) − 2L−1Re1−λn/µ − 2κ2,1 − 2cnν
−2F1

}
dt ′, (A 3)

where An = 2(n − 1). Now it is necessary to find estimates for the time integrals of
F1 and κ2,1 over the interval �t = t − t0 . The first comes from integrating the energy
inequality for weak solutions from t0 → t and requires the use of the global pointwise
upper bound for the energy ‖u‖2. This gives∫ t

t0

F1(t
′) dt ′ � c1νLRe4 + L−1ν2(c2Re4 + c3Re2)(�t). (A 4)

The second comes from manipulating the inequality

1
2
Ḟ1 � − 1

4
νF2 + c ν−3F 3

1 + ReF1, (A 5)

as shown in Doering & Gibbon (1995), to obtain∫ t

t0

κ2,1(t
′) dt ′ � c ν−2

∫ t

t0

F1 dt ′, (A 6)

where small correction terms have been dropped. Hence the last two terms of (A 3) are
determined by (A 4) alone. Using the lower bound (3.6) in the bad interval, inequality
(A 3) becomes

Anν
−1

[
κ−1

n,1(t) − κ−1
n,1(t0)

]
� cn,µL−1

∫ t

t0

Reλn/µ dt − c ν−2

∫ t

t0

F1(t
′) dt ′, (A 7)

where the Re1−λn/µ term has been dropped as small. Now define the coefficients

Bn = cn,µReλn/µ − c3Re4 − c4Re2, (A 8)

where λn has already been defined in (2.5). Also define

Cn = c1Re4 − AnL
−1κ−1

n,1(t0) > 0. (A 9)

Using the estimate (A 4) in (A 7) gives

Anκ
−1
n,1(t) � −LCn + L−1νBn�t. (A 10)

At high Re, to be sure that Bn > 0 we need

4µ < λn. (A 11)
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In addition, singularities can only potentially occur when the right-hand side of (A 10)
is negative; that is, in the interval 0 � �t � (�t)c where

(�t)c = c5

L2

ν
Re4−λn/µ. (A 12)

Only dominant terms have been kept in (A 12). Now κn,1 � κn, which has a lower
bound in (3.6), so to avoid violating this the bad interval itself cannot exist for longer
than

(�t)b =
L2

ν

(
c5Re4−λn/µ + c6 Re−2λn/µ

)
. (A 13)
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